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PREYACE

Mathematics is such a vast and rapidly expanding field of study that there

are inevitably many important and fascinating aspects of the subject which,

thoue4 within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This sei.ies of pamphlets,

whose production is sponsored by the School Mathematics Study Groupis designed

to make material for such study readily ac.:essible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum

but in a more extensive or intensive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard curriculum.

it is hoped that these pamphlets will find use in classrooms in at least two

ways. Some of the pamphlets prcduced could be used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different from the treatment in the

regular text of the class. In all cases, the pamphlets are Oesigned to promote

the enjoyment of studying mathematics.

Prepared under the supervision of the Panel on Supplementary PUblications of the
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Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisiana
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MATHEMATICAL SYSTEMS

COMMENTARY FOR TEACHERS

In this boc et it is particularly important that teachers have clearly

in mind both the ptjecttves of the booklet and the suggested method of approach

to be used with it.

The nain EVective, is to lead the students to achieve some appreciation

of the wature of mathematical pystema. It is neither intended nor desirable

thaft the students menorize the various tables introduced here, or drill for

Mastery of the operations introduced here.

It is especially important that the teacher read this booklet through

very carefully before planning his presentation, and give considerable thought

to umme introductory activation, and even more to how to lead the students to

discover the various relationshils and properties which appear in the booklet

for themselves in advance of the reading of the text. The text itself attempts

to suggest problems and processes for doing this as does this teacher's guide.

However, these can be effective only if carefully planned for by the teachers.

The process of discovering, of perceivini for one's self is a vital step in

achieving our major objective: an appreciation of the nature of some types of

mathematical systems. This is close to an appreciation of the nature of

modern mathematics and of the work of mathematicians.

One of the most important activities of modern mathematicians is the

searcklfor common attributes of properties often found in apparently diverse

situations or system. Sometimes these common elements are deliberately built

iloto MeV systems which are constructed as generalizations or abstractions of

old systems, as when the number system is extended from the system of counting

numbers to the whole numbers, to the rational numbers, etc., etc. Sometimes

these common elements are observed in systems less clearly related at first

glance, as when the changes of position of a rectangle into itself are

conceived of as forming an algebraic system with a "multiplication" table,

which is discussed in the booklet.



Frequently, the systems developed out of the intellectual. curiosity of

mathematicians and their search for patterns in diverse abstract situations

have been exactly the tools needed and seized upon by scientists in their

attack on the problems of our physical world. The theory of groups, which

actually has as its logical beginnings the properties discussed in this

booklet, had its chronological beginnings in the early 19th Century in problems

relating to the solution of equations. Matrices, some of which form groups

and give further examples of the principles of this booklet were invented

largely by the Englishman Arthur Cayley a little later. Within our generation

the German physicist Werner Heisenberg has used matrices in the formulation of

the quantum mechanics which is highly important in modern physics. Analogous

stories relate the development of radio by Marconi to the differential

equations of Maxwell, and point out that the outgrowths of Einstein's relativity

theory owe much to his use of the tensor calculus developed by the Italian

geometers Ricci and Levi-Civita. All of these stories have the same theme,

namely, that both mathematicians and scientists are always seeking unifying

principles or patterns. Frequently mathematics, developed solely for the

intrinsic interest of its properties and structure, was later found to fit

the needs of science, but for both science and mathematics we need to develop

students who can see and understand patterns and structure.

In this booklet we nre studying mathematical systems involving sets of

elements and binary operations. Such systems which have certain simple

additional properties are called groups and their study is a major branch of

so-called "modern algebra." We shall not use all of these technical terms.

However, other substantial objectives incidental to the major concern of this

booklet Find appropriate for secondary school students are:

1. Increased understanding of the nature and occurrence of the

commutative, associative, and distributive properties, as

well s- rsoncepts of closure, identity element, inverse

of an element.

2. Increased understanding of the inverse of an operation and

its relationship to inverse and identity elements.

Additional discussions of these ideas and problem materials may be found

in the books listed in the bibliography at the end of this booklet.



Aside from the general considerations mentioned above, there are very

specific Applications of the modular systems with which this booklet is

Chiefly concerned. The applications to days of the week, hours of the day,

days in the month are obvious and immediate. NOt quite so obvious are

applications to two-way switches (mod 2) which are most common, but also to

n-way switches for a nubber of small values of n. These are used increasingly

in modern computing and in industry. The recognition that all are aspects of

one system -- modular arithmetic -- gives insight not only to mathematics

but to various applications as well. This in turn is an example of

periodicity -- a repetitive pattern -- that occurs so often within and outside

of mathematics.

The teacher should be especially cautioned in the use of the exercises

in this booklet. There are altogether too many for use in one class. To give

all would lay too much stress on techniques and make a chore out of what should

be an interesting development. Many exercises are given so that the teacher

may use different sets in different classes and have some left over for

review at the end.
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1. A New Kind of Addition

Several of the sections, including the first, discuss the properties of

what is referred to as modular arithmetic. The face of a clock is used to

illustrate modular addition. The following quote provides background for the

basic notion of this idea:

"In number theory we are often eoncerned with propertiea which are true

for a whole class of integers differing fram each other by multiples of a

certain integer. Take, for instance, the fact that the square of an odd

integer when divided by 8 leaves 1 for a remainder. Here we hhve a

property holding for all odd numbers; that is, for a class of numbers differing

from each other by multiples of 2. As another example, we see that when the

last digit of a number, in decimal notation, is 6, then the last digit of its

svare will also be 6. Thus, in this simple example, we deal again with a

property shared by integers differing by a multiple of an integer; namely, 10.

"The consideration of properties holding for all integers differing from

each other by a multiple of a certain integer leads in a natural way to the

notion o' congruence,. TWo integers a and b whose difference b is

divisibi by a given number m (not 0) are said to be congruent for the

.modulus m or simply congruent modulo m. Gauss, who introduced the notion

of congruence, proposed the notation

a II b (mod m)

to designate the congruence of a and b modulo m."
1

Some textbooks use the following definition:

If a = km + b, then a in b (mod m). The IS sign is read, "Is

equivalent to" or "is congruent to".

We emphasize that there is no need for the pupil to become familiar with

the terms used in the above discussion, including "modular arithmetic".

In solving problems using replacements, encourage the pupil to make a

list of possible replacements first. For (mod 5) the set of possible

replacements would be (0,1,2,3,4); for (mod 8), the set would be

(0,1,2,3,4,5,6,7). These ere examples of finite system.

lUspensXy and Heaslet, Elementary Number Theory, McGraw-Hill, 1939,

page 126.

4
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For the teacher's information each element of the set can be considered

as an esaltlime class, thus, numbers are put in ,eouiyalence classes.

Without doubt, some pupils will wonder why the aytbol "im" ("is mon-

gruent to") is used instead of ".". This is an excellent opportunity to

point out that the sign is used when we have two names for the same thing;

thus 3 + 2 . 4 + 1 since these are two names for the same number, five. In
the case of modular arithmetic, when we say "Five is congruent to oney (mod 4)",

the "five" and the "one" are not names of the same thing, thus it is necessarY

to introduce another symbol to describe this relationship.

Answers to Exercises I

1. + 0 1 2 3

0

1

3

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

2. (mod 3) (mod 5)

+ 0 1

0 1.

- L.-,

2 0

3. (a) 0

(b) 1

2 0 1 2 3 4

2 0 0 1 2 3 4

0 1 1 2 3 4 0

1. 2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

The teacher may want to let the students try exercises (mod 4) before

taking up other moduli.

5



4. (sod 6)

1 2

1

3

(a)

(b)

0 1 2

1 2 3

2 3 4

3 Li 5

4 5 0

5 0 1

2

4

3 4

3 4 5

4 5 0

5 0 1

0 1 2

1 2 3

2 3 4

3 3

4 4

5 5

(c) 2

(d) 2

6

(mod 7)

1 2 3 4 6

1 2 3 4 5

2 3 4 5 6

3 4 5 6 0

4 5 6 0 1

5 6 0 1 2

6 0 1 2 3

0 1 2 3 4

The pupils may use the tables made in Problem 3 above or make sketches

of clocks.

(e) 4

(f) 4

(g) 1

(h) 0

6. 23 , 5(4) + 3. The hand will go around four times and stop at 3.

7. Seven hours after eight o'clock is five o'c1oc1%.. This is addition

(mod 12).

6

0

1

2

3

4

8. Nine dkys after the 27th of March is the fifth of April. This is addition

(mod 31) since there are 31 days in March.

2. A New Kind of Multiplication

This section does for multiplication what the first section did for

addition. It not only gives other examples of operations for use in the

next section but also prepares for modular arithmetic in a later section.

The transition from getting a multiplication table by adding to getting

it by dividing and taking the remainder should be made on the initiative of

the students as a means of making computation easier. It is hoped that this

could be discovered by some of the students themselves. Problems 5 and 6

are designed to encourage this transition. Thin is certainly one place where

lj



to push a transition too rapidly can lead to trouble but where discovery in

the students' own good time can be an enjoyable experience for all concerned.

Ansvers to klercises 2

1. (a)

(b)

(c)

0 0

1 0

2 0

3 0

1 0

2 0

3 0

4 0

5 0

6 0

4

(mod 5)

1 2 3 4

0

1

2

3

4

0

2

4

.t.

3

0

3

1

14

2

0

4

3

2

1

(mod 7)

1 2 3 4 5 6

0 .0 0 0 0 0

1 2 3 14 5 6

2 4 6 1 3 5

3 6 2 5 1 4

4 1 5 2 6 3

5 3 1 6 4 2

6 5 4 3 2 1

(mod 6)

1 2 3 4 5

0 0 0 0 0

1 2 3 4 5

2 4 0 2 4

3 0 3 0 3

4 2 0 4 2

5 4 3 2 1

7 -.
0



2. (a) 1 (4) 1

(b) 0 (e) 0

(a) 3

3. (a) 6 (c) 6

(a) 1 (d) 0

4. (a) (7)(10) (mod 31)

70 mi8 (mod 31)

4 + 8 = 12; hence February 12 is the date 10 weeks after

December 4th.

(b) (2)(365) s I (mod 7)

730 M2 (mod 7)

Thursday was the day of the week for August 6, 1959.

(mod 5)

x 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

6. The Thble is identical with the multiplication Table (mod 5). Dividing

a Whole nuMber by 5 and retaining the remainder yields the same

results as those obtained by subtracting the greatest multiple of five

contained in a given number and retaining the remainder. It may be

easier to divide and retain the remainder.

* 7.

*8. (a) impossible'

(b) impossible

(c) x 1, x 3

(d) impossible

(e) x . 0, x = 2, x = 4

(d) x = 3

(e) x = 0



3. What Is an Operation?

Skilla and Understandine

1. TO recognize a binary operation described by a table.

2. To recognize a binary operation deecribed in words.

3. To find, from a table, the result of putting two elements together

in a binary operation described by the table.

L. To find, by computation, the result of pvtting two elements

together in a binary operation described in words.

5. To tell, from the table for a binary operation, whether or not

the operation is commutative.

6. To know that:

(a) In order to show that a binary operation is associative, it

is necessary to show that an equation [e.g. a if(b =

(a* 1))* c) holds for every triple of elements a, b, c.

(b) In order to show that a binary operation is not ass.ciative,

it is sufficient to find one triple of elements a, h, c

for which the equation does not hold [e.g. a *(a * c)

(a* b) *el.

Teaching SUggestions

To be given a binary operation, we must be giren a set of elements and

a way of combining any two elements to get a definite thing. The "definite
thing" may or may not belong to the original set of elements. The two elements
we combine may be the same element taken twice. If the operation is given to
us by a table, the set is composed of those elements whicl. appear in the

left-hand column and in the top row (the same elements must appear in both
places). For example, the set for the operation of Table (c) is (0,1,2,3);

that for the operation of Table (d) is (1,2,3). In Table (d), all the

entries in the table belong to the set (1,2,3); in Table (c) many of tne
entries in the table do not belong to the set (0,1,2,3). This point is

discussed more fully in the next section on closure.

Bring out by class discussion that the entries in the tables (the

results of putting two elements together) could be anything at all. As later
examples will show, they do not have to be numbers.

9



Practice reading the tables. Stress that, in evaluating 1 C13, the

"1" is to be found in the left column, and the "3" in the top row. Point

out that 1 0 3 . 5 and 301 = 7, so it is necessary to be careful about

the order in which elements are written.

Some examples for class discussion are given below.

EXample 1: Set: The counting numbers.

Rule of Procedure: Given any two elements, take twice the first and add

three times the second. This is an operation, but it is not commutative

and it is not associative,

Example 2: Set: The counting nuMbers.

Rule of Procedure: Given an) two elements, take twice one of them and

add three times the other.

This rule does not define an operation since a "definite thing" is

not always determined. For instance, in combining 2 and 3, we are

allowed to form either 2 2 3. 3 - 13, or 2. 3 + 3 .2 = 12. The

result of an operation applied to two elements must be unique, that is,

there can be one and only one answer. It could also be seen from a

table that this rule does not describe an operation. The table would

have more than one entry in SOME places (everywhere except on the diagonal

from upper left to lower right).

Example 3: Set: The whole numbers.

Rule of Procedure: Given any two elements, divide the first by the

second.

This rule does not define an operation, since division by zeru is

impossible. The elements 2 and 0 cannot be put together in that

order. Notice that, in the order 0 and 2, they can be combined

(the result is zero). It could also be seen from a table that this

rule does not describe an operation. The table would have sane of the

spaces blank (the column with "0" at the top would be blank).

10



Discussion of EXercises

2. It the schematic diagram at the

right, a * b is to be entered

at position X, and b * a is

to be entered at position Y.

XThese two positions are 1 ,
1

symmetrically located with

respect to the diagonal fram

upper left to lower right.

(The elements are arranged in

the same order in the top row

and left column.) If an operation

is cammutative, its table will be symmetric about this diagonal, and

conversely.

S.

3. Bring out by discussion that, to prove an operation is associative,

requires testing every triple; one example would be sufficient to prove

an operation is not associative. To prove associativity for an operation

by examining all the cases is almost always a long process. Each student

should check 2 or 3 eases and if all of them are satisfactory, the

following statement can be made: "This operation appears to be

associative, but we are not really sure."

4. In making a table for each of these operations, arrange the elements of

the set in the sane order in the top row and left column. Compute and

fill in as many entries in the table as needed to see the pattern.

Associativity can be decided from known properties of the counting

nutbers.

(a) This operation is not completely described. If the two given

numbers are equal, there is no smaller one, of course. Bring out,

by class discussion, that, if the two nutbers are the same, the

result of the operation should be defined as that same nuMber.

11



5. and 6. The students will need help in beginning these problems. The

successive steps are as follows:

(1) Choose a set (each pupil may have a different set, but it is better

not to have too many elements in each set so the problem will mot

be too long). Suppose the set (1,2,3) is chosen.

(2) Mike the framework for a table as

shown at the right. The elements 2

in the set which was chosen in (1)

will appear in the 1e2t column 2

and top row. ArTange them in the 3

same order.

(3) Choose a symbol, such as for

the operation and put it in the

left-hand corner of the framework; make up a name to go with it,

such an "star".

(4) Fill in the table. Emphasize that the names of any objects whatever

may be placed in the body of the table -- it is not necessary that

these objects be elements of the set chosen in (1). If the

operation is to be commutative, the table must be symmetric about

the diagonal from upper left to lower right. If the operation

is not to be commutative, the table must not be symmetric.

7. Here, a way to write the information is to arrange the elenents and the

corresponding results of the operation in two rows or colunns. Usually

some sytbol (such as "x") is used to denote an element of the set

and a different sytbol (such as "y" or, in this case, "x3") denotes

the corresponding result of the operation. The table is given in two

columns in the answers. It could also be written in two rows as shown

below.

1

x 0

? 0

1 2 3 4 5 6 7 8 9 10

1 8 27 64 125 216 343 512 729 1000

Notice that a unary operation requires only a one-dtmensional table,

a binary operation requires a two-dimensional table, and a ternary

operation yould require a three-dimensional table.

12



Answers to Eke:seines 1

1. (a)

(b)

(c)

1.

6

8

(h)

(i)

(j)

1

8

Not possible; 1 02 mg 4
(d) 7 and 1 0 4 is not defined
(e) 2 since 4 does not appear
(f) 3 in the top row.

(g) 1 (k) 3

(1) 3

2. (a), (b), (d), (e). The table must be symmetric about the diagonal
from upper left to lower right. See discussion, Ekercises 2.

3. There is no short-cut method; to prove associativity eada triple of
elements must be coMbined in the two ways and the corresponding results
must be equal. The operations of Tables (a) and (d), (e) are associative;

those of Tables (b) and (c) are not. See discussion, Exercises 3.

4. See discussion, Exercises 3. The operation symbols are omdtted in the
following tables:

(a) 26 .27 28 .. 74

26 26 26 26 26

27 26 27 27 27

28 26 27 28 0 28 Cammutative: Yes

Associative: Yes

74 26 27 28 74

(b) 501 502 503 ... 535

501 501 502 503 535

502 502 50e 503 535

503 503 503 503 535 Commutative: Yes

Associative: Yes

%,
535 535 535 535 0,00 535

13



(c) 2 3 5 7 11

2 2 3 5 7 11

3 3 3 5 7 11

5 5 5 5 7 11 Commutative: Yes

7 7 7 7 7 11 Associative: Yes

11 11 11 11 11 11

.

.

.

(d) 4o 42 44

40 140 40 40

42 42 42 42

44 44 44 44

60

(e)

SOO

SOO

It

0

60

40

42

44

6o 60 60

Cammutative: No

Associative: Yes

49

51

53 Commutative: No

54 Associative: No

(Try the triple 1, 2, 3.)

14(
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(r)

5

2 3 4 5 6

1 1 1 1 1 1

1 2 1 2 1 2

1 1 3 1 1 3

2 1 4 1 2 Commutative: Yes

1 1 1 5 1 Associative: Yes

2 3 2 1 6

. I I 060

.00

(g) 1 2 3 4 5 ..

1 2 3 4 5

2 2 2 6 4 10

3 3 6 3 12 15

4 4 4 12 4 20

5 5 10 15 20 5 .00

(h) 2 3 4 000

3

14

9

16

1 1

8 16

27 81

64 256

arm.

15

V

COmmutative: Yes

Associative: Yes

Commutative: No

Associative: No

(Try the triple 2, 1, 3:

(13)(21)3 - 8 i 2 2 )



5. Many answers axe possible, of course.

The only requirement is that the

table be symmetric about the

diagonal from upper left to lower

right (and that each place in the

table be filled uniquely so that

the table does describe an operation).

Many answers are possible, of course.

The only requirement is that the

tabl, must not be symmetric about

the L.I.agonal from upper left to'

lower right (and that each place in

the table be filled uniquely so that

the table does describe an operation).

* 7. x3 See discussion,

0

1

3 27

64

125

216

7 343

8 512

9 729

10 1000

See discussion, Exercises 2.

1 2 3

F

R Y

P Q

See discussion, Exercises 3.

Exercises 3.

1 6



4. Closure

Skills and Understandings

1. TO recognise, fram the table describing a binary operation, whether

or not a set is closed under the operation.

2. TO find whether or not a set is closed under a binary operation

described in words.

Teaching Suggestions

The discussion here should prepare the pupil for consideration of more

general systems where the elements may not be numbers.

Bring out, by class discussion, that closure involves two things;

(1) It must be possible to put any two (not necessarily different) elements

of the set together and (2) the result obtained must always be an element

of the set. Material for class discussion is provided by the various parts

of Problem 4 of Exercises 3.

Az with associativity (see discussion of Problem 3, Exercises 3), to

prove a set is closed under an operation, all cases must be considered; a

single counter example would prove that the set is not closed under the

operation.

It has been found in some classes that the pupils have difficulty because

they expect the concept of closure to be much more difficult than it really

is. Perhaps they should be reassured ma this point.

The chief purpose of Examples 5 and 6 is to contribute to the under-

standing of closure by showing what a set must contain if it is to be closed.

This is in a way also a preparation for the discussion of the existence of an

inverse. Incidentally, the idea of a generator is an important mathematical

concept; e.g., all the counting numbers are generated by the single nuMber 1

under addition. This is the principle of mathematical induction: A statement

is true for all counting numbers if, first, it is true for the number 1 and,

second, whenever it is true for a counting number k it is also true for

k + 1. In a way we "generate" the truth of the statement for all counting

numbers by starting with 1 and proceeding step by step. Some teachers may

feel that these two examples are too hard. If they are omdtted the following

Problems in Exercises 4 should also be omitted; 3, 4, 5, 6; also Problem

in Exercises 6 should be emitted.

17



Discuesion of Exercises 4

1. Etch table determines a aet (the set of elements in the left column and

top row), and describes completely the corresponding operation. For a

set to be closed under the corresponding operation, each entry in the

body of the table must be an element of the set. In Tables (*), (d),

and (e) this is true; in (b) and (c), it is not.

*7. Pram the definition of commutativity in Section 3, it must be possible

to put any two elements of the set together in either order and the same

resUlt must be obtained, but the result of the operation is not required

to be an element of the set. In fact, Table (b) of Section 3 gives an

example of a commutative operation, and the set on Which the operation is

defined is not closed under the operation.

*8. Pram the definition of associativity in Section 3, it must be possible

to put any three elements of the set together in the two ways specified

and the same result must be obtained. This means that the set on which

the operation is defined must be closed under the operation since, if we

can coMbine a, b, c as (a + b) + c, then certainly a + b must be

an element of the set on Which the operation is defined; otherwise we

cannot proceed with (a + b) + c. That is, the set is closed under the

operation.

9. and 10. The pupils may need help in beginning these problems. The set

of elements has been chosen, but each pupil should choose a sytbol for

his operation and fill in the entries in the table. See discussion of

Problems 5 and 6, EXercises

Answers to Exercises 4

1 The sets of (a) and (d) are closed under the corresponding operations

(all the entries in the table appear in the left column and in the top

row); those ef (b) and (c) are not closed (som entries in tables (b)

and (c) do not appear in the left column and in the top row). See

discussion, Exercises 4.

2 (a) Closed (f) Not closed; 15 - 3 cannot be performed

(I) Closed (g) Closed

(e) Closed (h) Closed

(d) Not closed (1) Not closed; j + is not a prime

(e) Closed *(j) Not closed; $ + 3 = 11 (base 5)



(a) (2,4,6,...,2k,...) where k is a counting umber.

(b) (2,22,23,11.,2k,...) where k is a counting number.

4. (a) (7,14,21,...,7k,...) where k is a counting nutber.

(b) (7,72,73,.,7k,.) where k is a counting number.

5. (a) 1 01 3, (1 0 1)0 1 3 0 1 2.

[ (1 0 1 ) 0 1) 0 1 a 2 1 1.

If we continue the operation E), we generate the same set again.

Hence the set (1,2,3) is the sdb-set of S generated by 1

under the operation a.

(b) 2 0 2 m 2, (20 2) 0 2 2.

[ (2 0 2).0 2) 0 2 . 2 0 2 2.

It is clear that the sdbset of S generated by 2 under the

operation () is the sdbset (2).

*6. (3, (3 4' 3), (3 + 3) + 3, ((3 + 3) + 31 + 3, ...) or

1
Yes; 3 and 3 are in the subset of rationale generated by 3 under

1
division. No; 3 3 or 9 is not in this subset. Therefore the set

is not closed under division and hence it cannot be associative. See the
discussion 1:41 Problem 8.

7. NO; see discussion, Exercises 4

8. Yes; see diermssion, Exercises 4.

9. Many answers are possible, of course. 0

The only requirement is that each
0 0

entry in the table belong to the

43 43set (0,43,100) and that each

place in the table be filled 100 0

uniquely so that the table does

describe an operation. See discussion, Exercises 4.

10. Many answers are possible, of course.

The only requirement is that at

least one entry in the table must not

be an element of the set (0,43,100)

(and that each place in the table be

filled uniquely so the table does

* 0

0 0

43 43

100 2

describe an operetion). See discussion, Exercises 3.
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5. Identitiy Element; Inverse of an Element

Skills and Understandings

I. To determine from a table whether there is an identity element for

the operation, and if so, what it is.

2. lb realize that an element cannot have an inverse unless there is

au identity element.

3. TO determine from a table which elements have inverses.

4. TO find the inverse of an element, if the element haa an inverse.

Alaimpuggestiona

Let the students experiment with several tables finding identity elements

and inverses of elements. Try to lead them to discover that there is an

identity element for an operation if, in the table, (1) there is a column

eXactly like the left column, and (2) there is a row exactly like the top

row. The element associated with both will be the same, and will be the

identity, because if ax x

we may replace x by b and

and yb = y for all x and y in the set,

y by a to get ab b . a.

if. 1 2 3 4 5

1 2 3 4 5 1
In the figure the last row and

2

3

3

4

4

5

5

1

1

2

2

3

the last column fit the above

conditions. 5 is the identity

element.

4 5 1 2 3 4

5 1 2 3 4 5

4 5 1 2

4 5 1 2 3

5 1 2 3 4
The third column and the fourth

row fit the conditions. 5 is

4 2 3 4 5 1
the identity.

5 3 4 5. 1 2

1 2 3 14 5



Lead the students to discover that an element has an inverse if the .

identity appears in the sane relative position in the rov as in the column

associated with this element when the top row and left column are in the

same order.

For example: In the first table the second element in the third row and

the second element in the third column are both the, identity element 5. This

means that 3 has an inverse. Since 3 was associated with 2 both times

to get the identity 5, then 2 and 3 muet be inverses. The pairs 1

and 4, and 5 and 5 art seen to be inverses in a similar way.

Notice that the second table has the same elements and the same operation

au the first, but that the order of the elements in the left column is

different from that in the top row. It is not possible now to use our usual

check of symmetry about the diagonal for commutativity. The method of finding

the inverse of an element discussed above does not work out either.

The above may be pointed out to the students if you wish. None of the

other tables in the chapter will have its top raw and left column in different

order.

The teacher should be warned that there is some difficulty abaut division

and subtraction in a non-commutative system. For multiplication b is

called the inverse of a if ab ba 1.

This can happen in a non-commutative system. 1 2 3

This is such an example, where each element
2 32is its own inverse. But the symbol is

1 2ambiguous since 3. x . 2 has the solution

x = 1 and x. 3 = 2 has the solution 3 2 3 1

x = 2. Actually what is usually done for

such systems in to multiply by the inverse and not divide at all. For instance

1
we would either have the product .2 = 3.2 - 3 or the product

1
2. 3 - 2.

An analagous situation exists for subtraction when addition is not

commUtative. This can be illustrated in terms of the above example if we

replace by + and 7' by .3.
3

However, it was felt that such considerations as these were much too

complex for inclusion in the text and hence when quest ns of division or

subtraction arise, we restrict the systems to commutat! systems.
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Answers to ftertises

1. (a) In table (a), the identity is 5.

In table (d), the identity is 2.

(b) In table (a), the inverse of 1 is 4; of 2 is 3; of 5 is 5.

In table (b), no element has an inverse.

In table (c), no element has an inverse.

In table (d), the inverse of 1 is 3; of 2 is 2.

Each member of the seta for tables (a) and (d) has an inverse. The

operations described by tables (b) and (c) do not have identities so no

inverses can exist.

2. (a) Operation Identity

(a) 74

(b) 501

(c) 2

(d) None

(e) None

(f) None

(g) 1

(h) None

(b) The only inverses are those listed below.

(a) 74

(b) 501

(c) 2

(g) 1

(c) None.

is the inverse of 74.

is the inverse of 501.

is the inverse of 2.

is the inverse of 1.

3. No; if there are two identities (P and Q) for a given operation,

then consider the result when P is coMbined with Q. Since Q is an

identity, the result must be P. But since P is also an identity, the

result must be Q. Thus, P and Q must be the same element since

each equals the result of oathbining P and Q.

22
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Answeru to Exercises 2

1. (a) lx 111 (Impd 6), x . 1
2:c 1 (aod 6), not possible
3x 1 (mod 6), not possible
14X 1 (mod 6), not possible
5x 11 (mod x 5

(a) 1, 5. EaCh is its own inverse.

2. (MOd 5)

,

multiplicative
inverse of a b + a b multiplicative)

inverse of a
2 3 1 + 2 a 3 1 3 m 3

2 3 2 + 2 1 1 2 3 in 1

3 2 3 3 + 2 a 4 3 3 a 4

3 2
.

2 4. 3 is 4 2 2 II 4

3 3 2 3 4 3 a 1 3 2 1 3

4 3 2 4 + 3 a 3 4 2 1 3
1 4 4 1 + 4 a 4 1- 4 a 4

4 4 2 + 4 a 3 2.43
3 4 4 3 + 4 in 2 3 4 si 2

4 4 4 + 4 si 1 4 4 a 1

23
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3. (mod 5)

b a
additive
inverse of a b - a

b
(additive

-.
inverse of a)

,

0 1 4 0 - 1 is 4 0 + 4 MI 4

2 1 4 2 - 1 II 1 2 + 4 .11

4 1 4 4 - I al 3 4 + 4 a 3
,

2 3 1 - 215 4 1 + 3 al 4

2 2 3 2 - 2 mi 0 2 + 3 sr 0

3 2 3 3 - 2 MI 1 3 + 3 *1

2 4 1 2 - 4 21 3 2 + 1 ii 3

3 4 1 3 - 4 ii4 3 + 1 . 4

4 4 1 4 - 4 mi0 4 + 1 a 0

4. (a) no

(b) no

(c) no

(d) yes, except division by zero

5. (a) [0,1,2,3,4,5)

(b) [1,5), (51

(c) (2,4), (1,5) [7)

6. (a) [A,B), (CM, (A,D)

(b) yes, D

(c) (C,D)

(d) [C,D)

If you wish, you might bring up the general problem of defining an

operation which is inverse to a given operation * defined on a set. If

there is an identity element e for *, if every element of the set has an

inverse element in the set, and if * is associative, then

(the inverse of b) * a

could be written a *I b. Then will be the inverse operation for it.
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!fence

skit' b m (the inverse of b) * a.

For example: Suppose a and b are rational nuMbers, b 0, and if is

the matiplication operation, then 4E' is division (the inverse operation)

and 3 is the inverse of b.

Hence:

1
a + b = X a.

..=11MaP

6. What Is a Mathematical System?

Here the mathematical system is given an info'rual definition and is

followed by discussion in terms of previous examples and some new ones. Here

the teacher should not try to be too formal.

Teaching Suggestions

In Section 3, it was pointed out that a table can list a set and

describe an operation defined on that set. Thus, a table really describes a

mathematical system, and not merely an operation. Illustrate by discussing

tables (a) (e) of Section 3, and by showing that each table does describe

a mathematical system (a set and one or more operations defined on that set --

in each case, it will be one operation).

In Example 1, Part (c) (egg-timer arithmetic), remind the pupils of the

symmetry test for commutativity discovered in Problem 2 of Exercises 3. The

table for egg-timer arithmetic is symmetric, so the operation is commutative.

Have the class decide on a word for the operation in Table (c) of this

section. ("Twiddle" is sometimes used.)

Answers to Exercises 6

1. Each one of Tables (a), (b), (c) describes a mathematical system.

For Table (a), the set is (A,B); the operation is o.

For Table (b), the set is (P,Q,H,S); the operation is

&dr Table (c), the set is (A, C1, (:),\ ); the operation is

25
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2. (a) A

(b) 0
(c) 0
(d) B

3. The operation o is not commutative, since Table (a) is not symmetric.

The operations * and are both commutative, since both Tables (b)

and (c) are symmetric.

I. There is no identity element for the operation o.

There is no element e, such that both of the equations Aoe= A

and Boe=B are correct.

The element R is the identity element for the operation *. The row

of Table (b) with "R" in the left column is the same as the top row,

and the column with "R" at the top is the same as the left column.

The element A is the identity element for the operation The first

row and column of Table (c) are the same as the top row and left column

respectively.

6. Each of the operations * and ^, seems to be associative since, in

each of the cases we have tried, the corresponding expressions are equal.

To prove the operations are associative, we would have to examine all

cases and show that the corresponding expressions are equal. To prove

an operation is not associative, a person would have to find one example

where the corresponding expressions are not equal.

7. BRAINBUSTER. (a) The element 2 cannot be combined with 2 by the

operation * (that is, 2 * 2 is not defined).

(b) 2 * 1 is not uniquely defined. Many results are possible when

2 and I are coMbined.

(c) The set given by this table is (1,2,3,43. But it is not possible

to combine every pair of elements (e.g. 3 and 3). We do not have

an operation defined on the set.
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7. Mithematical Systems Without Numbers

Skills and Understandings

1. To recognize a mathematical system when it is described in words.

2. For systems without numbers: To recognize the elements of the set;

to recognize the operation; to recognize an identity element;

to recogmize the inverse of an element.

Teachine Suggestions

Each pupil should have his own rectangle to manipulate, ouch as, a

3" x 5" card. Do not use square carde. Be sure that each pupil labels his

rectangle correctly so that comparisous between different pupils are possible.

Check especially that each corner of the card is labeled with the same letter

on both sides. Stress that the card is used only to represent a geometric

figure -- a closed rectangular region.

It cannot be repeated too often that the changes of position of a

rectangle are the elements of the set in the mathematical system discussed

in this section. One of these Changes is something that is "done"; that is, it

is a physical activity, but it is an element of the set -- it is not the

operation of the system. The operation of the system is much more elusive.

Any operation defined on the set must be a way of combining any two of these

hysical activities (changes) to get a definite thing. The particular

operation we have chosen coMbines twv of these changes by doing the first one

and then the other. The result (definite thing) obtained is one of the changes,

but the operation is the way of combining them, that is: First do ..., and

then do .

Discussion of Exercises 7

3. In proving associativity, "all cases" must be considered. There is one

case i'or each triple of (not necessarily different) elements of the set

on which the operation is defined. For the operation ANTH, there are

4 elements in the set, so there will be 4. 4.4 = 64 triples; that is,
64 cases must be considered to prove the associative property.

5. andit6. For ease in grading written work it is essential that all students

use the same notation in these exercises. One possible notation is

described in the answers.



Answers to Elartises 7

H B

H R

V

R I V

H V I

2. (a) V (f) I

(b) V (g) I

(c) V (h)

(a) 1/ (i)

(e) I

3. (a) Yes

(b) Yes

(c) Yes, the operation is associative. A proof would require that

64 cases be checked. Each pupil should check two or three; do

not attesmt to check all cases. See discussion, &erases 6.

(d) Yes. I is the identity.

(e) Yes. Each element is its own inverse.

4. (a) ANTH I F

I I F

F F I

(b) Yes

(c) Yes

(d) Yes. All eases can be checked (there are 8 cases in all).

See discussion of Problem 3, Exercises 6.

(e) Yes. I is the identity element.

(f) Yes. Each element is its own inverse.
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IBS TUV
IR S TU
S IUV T

S SIR V TU
T T VUISR
U UT VR IS

V U T SR I

The operation is not commutative (R ANTH T T ARTH R) I iB the

identity element. Each of I, T, U, V is its own inverse element;

R and S are inverses of each other.

ME6. Notation:

I: Leave the square in place.

1

111:
Rotate clockwise

4
of the way around.

1
R2: Rotate clockwise of the way around.

3R
3

: Rotate clockwise of the way around.
4

H: Flip the square over, using a horizontal axis.

V: Flip the square over, using a vertical axis.

Di: Flip the square over, using an axis from upper left to lower right.

D
2

: Flip the square over, using an axis fram lower left to upper right.

Note: It was wuggested that a square card not be used. This problem is

included to show why such a suggestion was made.
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R1

'T.:m:4

R
3

H V

R2 R3 H V

D
2

D
2

R1 R1
R
2

R
3

I D
2

D
1

H V ,

R
2 12 R

3
1 R

-I
V H D2 Di

Ii3 R
3

I
R1

R
2

Di D2 V H

H H Di V D2 I R
2

Ri R
3

V V D
'2

H Di R
2

R
3

Ri

D
1

Di V D I R2
2

H R
3 R1

D2 D2 H D V
1 R1

R3 R
2

I is the identity element. The operation is not con=utative

(Ri ANTE H H ANTH R).

8. The Counting Numbers, and the Whole Nutbers

This section has problems which lead the pupils to conclude that the

counting numbers and the whole nutbers each form a mathematical system.

It is pointed out that the distributive property with Which the pupil is

familiar comes from the abstract discussion of this property. The pupils

should not be expected to duplicate the abstract definition.

One of the objectives of the section is to show a way to pull together

the concept of systems.

Some of the sets of numbers considered in ordinary arithmetic are: the

rational numbers, the whole numbers, the counting numbers, the even nutbers,

etc.
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Discussion of EXercises 810.411=1
4. One possible model of the mathematical system in this exercise is as

follows: Let A = (1,2), B (1,2,3), C a (1,214), D 0 (1,2,3,4).

Then, from the tables in the problem, the operation * is intersection
and the operation o le union. Each of these operations distributes

over the other.

Answers to Exercises 8

1. (a) Since the sum of two counting numbers is always another counting

number and the product of tuv counting numbers is always a counting

number, the set is closed under addition and multiplication.

(b) Both the commutative property and the associative property hold

for addition and multiplication.

Examples: Commutative: 2 + 3 . 3 + 2;

4 x 6 . 6 x 4

Associative: 3 + (4 + 7) = (3 + 4) + 7;

3 x (6 x 8) . (3 x 6) x 3.

(e) There is no identity element for addition.

The identity element for multiplication is 1; for every counting.
nuMber n, n n s 1 .n.

(d) The counting numbers are not closed under subtraction or division.

2. (a) The set of whole nutbers is closed under addition and multiplication.

(b) Both operations are commutative and associative.

There is an identity element for addition. It is zero; for any whole
number n, n + 0 = n = 0 + n. The nuMber 1 is the identity

element for multiplication.

The answers are the same as for I (a), (b), (c) except that there
is an identity element for addition in the whole number system and

not in the counting nutber system.

3. (a) Three examples are: 2(3

5(7

1(1

+ 4)

+ 10)

+ 1)

2. (2

= (5

- (1.

3)

'7)

1)

+ (2 '4);

+ (5 10);

(1 .1).

(b) Addition does not distribute over multiplication; for example,

2 + (3 4) . 14 ft 30 = (2 + 3) . (2 + 4).
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4. See discuasion, Exercises 7.

(a) Yes, here are 3 illustrations that * distributes over o:

A* (B o C) A. (A *B) 0 (A* C)

B * (B o B) B (B *B) o (B* B)

C * (B o D) C (C *B) o (C* 8)

(b) Yes, here are 3 illustrations that o distributes over *.

A o (H* C) A (A a B) * (A C)

B o (B*B) 8* (B o B) * (8 o B)

C o (B*D) D. (C o B) V (C 8)

5. (a) Closed; commatative; aasociative; 1 is the identity; only the

number 1 has an taverse.

(b) Closed; emsaltative; associative; no identity; no inverses.

(c) Closed; commutative; associative; 0 is the identity; only the

aumber 0 has an inverse.

(d) Closed; =mutative; associative; no identity; no inverses.

(e) Closed; commutative; associative; 0 is the identity; only the

number 0 has an inverse.

(f) Not closed; commutative; not associative; no identity; no inverses

6. (a) Both sets are closed under the operations. Both operations are

commutative and associative. Both systems involve the same set.

(b) The system 5(a) has an identity and 5(b) does not. Also, the

sets are different in these two systems.

*7. Many results are possible, of mamrse.

*8. (a) Yea. We are asked to mansider the two expressions a * (b o c)

and (a b) o (a * c), and find whether or not they are always

equal. For example, using a . 8, b n 12, c 15,

8 * (12 o 15) - 6 * 60 . 4.

(8 * 12) la (8 * 15) . 4 o 1 = 4.

(a) Yes. We are asked to consider the two expressions a o (b c)

and (a o b)* (a o c), and find whether or not they are always

equal. For example using a = 8, b = 12, c . 15,

8 o (12 * 15) = 8 0 3 24.

(8 o 12) * (8 o 15) 24 * 120 . 24.
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9. Modular Arithmetic

In this section, the number line is used to provide a picture of how
equivalence atones of whole numbers can be developed. At this time it may

be wise to re-read the first paragraphs of Section 1. We use the term

"multiple" to mean "multiple by a whole number".

Problems which may be used for motivation to explain the meaning of

modular systems include the ordinary 12-hour clock, the deys of the week,

and the months of the year. For example, "Today is TUesday; what dey will it
be six dgys from now?" Answer: Monday; this is (mod 7). "It is 4:30
o'clock. What time will it be 10 hours from now?" Answer: 2:30; this is
(mod 12).

Modular arithmetic may be thought of as a mathematical system with two

operations. Section I discussed modular addition and Section 2 discussed

modular multiplication. The two operations together allow us to use the

distributive property; thus, the whole numbers form a system under modular

addition and multiplication. In modular arithmetic only a finite number of

symbols is needed because infinitely many whole numbers axe represented by

ear:h symbol.

Other interesting highlights are:

A:product of non-zero factors may be zero in some systems.

There may be many replacements for x in a number sentence to make it

true.

Answers to Exercises 9

1. (mod 5) (mod 3)

12324 x 012324567
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 4 1 1 2 3 4 5 6 7

2 0 4 1 3 2 0 2 4 6 0 2 4 6

3 0 3 1 4 2 3 0 3 6 1 4 7 2 5
0 4 3 2 1 404040404

0 5 2 1 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(Encourage the pupils to look for patterns and to use what they have

previously learned about systems to make the tables.)
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2. (a) (mod 5): Yes; (ood 8): Yes

(b) (mod 5): Yes; (mod 8): Yes

(c) (mold 5): Yee; (sod 8): Yes

(d) (mod 5): 1; (mod 8): 1

(e) (mod 5): 1 and 4 are their own inverses; 2 and 3 axe inverses

of each other; 0 hes no inverse.

(mod 8): May 1, 3, 5, 7 arr inverses; each is its own inverse.

(mod 5): Yes; (mod 8): No. 2 x 4 00 (mod 8),(f)

4 x 2 ai 6 (mod 8), 4 x 4 or 0 (mod 8),

4 x 6 II 0 (mod 8), 6 x 4 mi 0 (mod 8).

3. (a) 3 (o) 6, 8, 12, 24

(a) 2 (d) 4, 8

4. (a) 2 (e) 4

(b) 0 (f) 1

(c) 5 it(g) 1. Any power of 6 ends in 6.

(d) 0

5. (a) 4 (c) 1

(a) 2 (d) 3

6. (t) 4 4 (c) 3, 3

(a) 1, 1 (4) Yes

7. (a) 0, 0 (c) 0, 1

(b) 2, 0 (d) No

8. (a) 6 (e) 0

(a) 3, 7 (f) 0

(c) 0, 4 (g) 9

(d) 2 (h) Not defined in this system.

9. (a) 4; What nuniber added to 3 gives 7?

(b) 4

(c) 7

*(d) 7

n



0 1 2 3 4

0 4 3 2

1 0 4 3 2

2 1 0 4 3

3 3 2 ,1 0 4

4 4 3 2 1 0

The set is closed under subtraction (mod 5).

11. (a) 3, 8, 13 and others (add 5)

(b) 3, 7, 11 and others (add 4)

(c) 0 and all multiples of
fo' of the form 51, K is a counting

nuaber.

(d) Any even nu:Der

(e) 3, or any odd number greater than 3

(f) 1, 3, 5 and so oa (all odd nuabers)

12. (d) Any even nuMber

(f) 1, 3, 5, 7, 9, 11, 13 and so on (all odd numbers)
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Fart I. True - False

°gentians can be described by tables.

A symbol can be made to mean anything providing we defime it.

Tbe identity for multiplication in ordinary arithmetic is zero.

Tba identity for addition in ordinary arithmetic is one.

Tbe additive inverse of 2 in the (mod 4) system is 2.

In ordinary arithmetic, with the set composed of all the rational

numbers except zero, the inverse of division is multiplication.

All mathematical systems are sets of nuMbers.

In (mod 5) arithmetic, 0/3 11; 2 (mod 5).

The set (0,1,2,3) is closed under sUbtraction mod 4).

T 1.

T 2.

F 3.

F 4.

T 5.

T 6

F 7.

F 8.

T 9.

Sample ,Q4estions

1.11ELIEL...2Mettan

Find the sums:

1. (9 + 2) (nod 12)

2. (5 + 4 + 3) (mod 6)

Find the differences:

Answers:

11

0

3. (5 - 2) (mod 6) 3

I. (3 - 5) (mod 7) 5

Find the products:

5. [(3 + 7) x 61 (mod 9) 6

6. 32 (mod 8)

Find the quotients:

7. (mod 5) 4

8, .

2
(mod 11) 0

7
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Part III. Miltiple Choice

The table below describes a mathematical system. It is to be used in
answering questions 1, 2, and 3 below.

C D

A CD A B

B D A B C

D B CD A

1. Which one of the following statements is true? (Anewers are starred).

A. The set (A,B,C,D) is not closed with respect to the operation
o.

* B. The operation o is commutative.

C. The operation o does not have an identity element.

D. The operation o is not associative.

E. None of the above.

2. The identity for the operation o is:

A. D

B. B

* C. C

D. Both A and B

E. None of the above.

3. In the mathematical system:

A. Only B has an inverse.

B. Only D ;110 an inverse.

C. Only A and C have inverses.

D. None of the elements has an inverse.

*E. All the elementE have inverses.
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4. Air what modulus m is 2 - 5s. 4 (mod m) true?

A. Mod 9

B. Mod 6

C. Mod 8

* D. Mod 7

E. None of the above.

5. For the system consisting of the set of odd numbers and the operation

of multiplication:

A. The system is not closed.

B. The system is not commutative.

C. The system has no identity element.

* D. None of the above is correct.

E. All of the above are correct.

6. For the system consisting of the set of even numbers and the

operation of addition:

A. The system is not closed.

* B. The system has an identity element.

C. The system ilas an inverse for addition for each element.

D. All of the above are correct.

E. None of the above is correct.

7. A mathematical system consists of several things. Which of the

following.is always necessary in a mathematical system?

A. Numbers

B. An identity element

C. The conzutative property

* D. One or more operations

E. None of the above
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Use the mathematical aystem as described below in answering Questions

8, 9, and 10. The aet or elements in our system is the set of Changes of a

rectangle.

The elements are

A

I means leave H means flip

on the hori-

zontal axis. axis.

alone.

V
A

V means flip

on the vertical

The following is am illustration of our operation *

V * H means do change V and then do change H.

Thus V * H = R.

8. H * H is:

A. H

* B. I

C. R

D. V

E. None of the above.

9. I * R is:

*A. R

B. V

C.

D. H

E. R * H
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halfway around
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10. (II *V) * V is:

A. I

B. V * V

*C. li *I
D. V

E. None of the above.
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